Refine Your Search

Topic

Author

Search Results

Technical Paper

Design and Simulation of Lithium-Ion Battery Thermal Management System for Mild Hybrid Vehicle Application

2015-04-14
2015-01-1230
It is well known that thermal management is a key factor in design and performance analysis of Lithium-ion (Li-ion) battery, which is widely adopted for hybrid and electric vehicles. In this paper, an air cooled battery thermal management system design has been proposed and analyzed for mild hybrid vehicle application. Computational Fluid Dynamics (CFD) analysis was performed using CD-adapco's STAR-CCM+ solver and Battery Simulation Module (BMS) application to predict the temperature distribution within a module comprised of twelve 40Ah Superior Lithium Polymer Battery (SLPB) cells connected in series. The cells are cooled by air through aluminum cooling plate sandwiched in-between every pair of cells. The cooling plate has extended the cooling surface area exposed to cooling air flow. Cell level electrical and thermal simulation results were validated against experimental measurements.
Technical Paper

Efficient Thermal Modeling and Integrated Control Strategy of Powertrain for a Parallel Hybrid EcoCAR2 Competition Vehicle

2014-04-01
2014-01-1927
Hybrid electric vehicle (HEV) is one of the most highly pursued technologies for improving energy efficiency while reducing harmful emissions. Thermal modeling and control play an ever increasing role with HEV design and development for achieving the objective of improving efficiency, and as a result of additional thermal loading from electric powertrain components such as electric motor, motor controller and battery pack. Furthermore, the inherent dual powertrains require the design and analysis of not only the optimal operating temperatures but also control and energy management strategies to optimize the dynamic interactions among various components. This paper presents a complete development process and simulation results for an efficient modeling approach with integrated control strategy for the thermal management of plug-in HEV in parallel-through-the road (PTTR) architecture using a flexible-fuel engine running E85 and a battery pack as the energy storage system (ESS).
Technical Paper

ESS Design Process Overview and Key Outcomes of Year Two of EcoCAR 2: Plugging in to the Future

2014-04-01
2014-01-1922
EcoCAR 2: Plugging in to the Future (EcoCAR) is North America's premier collegiate automotive engineering competition, challenging students with systems-level advanced powertrain design and integration. The three-year Advanced Vehicle Technology Competition (AVTC) series is organized by Argonne National Laboratory, headline sponsored by the U. S. Department of Energy (DOE) and General Motors (GM), and sponsored by more than 30 industry and government leaders. Fifteen university teams from across North America are challenged to reduce the environmental impact of a 2013 Chevrolet Malibu by redesigning the vehicle powertrain without compromising performance, safety, or consumer acceptability. During the three-year program, EcoCAR teams follow a real-world Vehicle Development Process (VDP) modeled after GM's own VDP. The EcoCAR 2 VDP serves as a roadmap for the engineering process of designing, building and refining advanced technology vehicles.
Technical Paper

Optimization for Plug-In Vehicles - Waste Heat Recovery from the Electric Traction Motor

2014-04-01
2014-01-1921
The Wayne State University (WSU) EcoCAR2 student team is investigating powertrain optimizations as a part of their participation in the EcoCAR2 design competition for the conversion of a 2013 Chevrolet Malibu into a plug-in hybrid. EcoCAR2 is the current three-year Department of Energy (DoE) Advanced Vehicle Technical Competition (AVTC) for 15 select university student teams competing on designing, building, and then optimizing their Plug-In Hybrid conversions of GM donated vehicles. WSU's powertrain design provides for approximately 56-64 km (35-40 miles) of electric driving before the Internal Combustion Engine (ICE) powertrain is needed. When the ICE is started, the ICE traditionally goes through a cold start with the engine, transmission, and final drive all at ambient temperature. The ICE powertrain components are most efficient when warmed up to their normal operating temperature, typically around 90-100 °C.
Journal Article

An Innovative Modeling Approach to Thermal Management using Variable Fidelity Flow Network Models Imbedded in a 3D Analysis

2011-04-12
2011-01-1048
Speed and accuracy are the critical needs in software for the modeling and simulation of vehicle cooling systems. Currently, there are two approaches used in commercially available thermal analysis software packages: 1) detailed modeling using complex and sophisticated three-dimensional (3D) heat transfer and computational fluid dynamics, and 2) rough modeling using one-dimensional (1D) simplistic network solvers (flow and thermal) for quick prediction of flow and thermal fields. The first approach offers accuracy at the cost of speed, while the second approach provides the simulation speed, sacrificing accuracy and can possibly lead to oversimplification. Therefore, the analyst is often forced to make a choice between the two approaches, or find a way to link or couple the two methods. The linking between one-dimensional and three-dimensional models using separate software packages has been attempted and successfully accomplished for a number of years.
Journal Article

A Component Test Methodology for Simulation of Full-Vehicle Side Impact Dummy Abdomen Responses for Door Trim Evaluation

2011-04-12
2011-01-1097
Described in this paper is a component test methodology to evaluate the door trim armrest performance in an Insurance Institute for Highway Safety (IIHS) side impact test and to predict the SID-IIs abdomen injury metrics (rib deflection, deflection rate and V*C). The test methodology consisted of a sub-assembly of two SID-IIs abdomen ribs with spine box, mounted on a linear bearing and allowed to translate in the direction of impact. The spine box with the assembly of two abdominal ribs was rigidly attached to the sliding test fixture, and is stationary at the start of the test. The door trim armrest was mounted on the impactor, which was prescribed the door velocity profile obtained from full-vehicle test. The location and orientation of the armrest relative to the dummy abdomen ribs was maintained the same as in the full-vehicle test.
Technical Paper

Occupant Compartment Updates for Side to Side Vibration in a Fuel Funny Car

2008-12-02
2008-01-2969
Nitro Fuel Funny cars have 7-8,000 hp and travel 330 mph in a quarter mile. These cars experience extreme forces in normal operation. One phenomenon familiar to drag racers is tire shake. Mild cases can cause loss of traction and vision. Extreme cases can cause injury or death. In March of 2007, a study and subsequent revision of the passenger compartment in a Fuel Funny car was performed after a fatal accident due to extreme tire shake. Tire shake on a drag race car normally occurs when the force on the rear tire causes the tire to roll over itself causing a loss of traction and side-to-side vibration. In other cases, if the tire fails at high speed, the tire may partially separate, causing an extreme vibration in the cockpit of the car. The vibration may set up a harmonic in the chassis, which is transferred to the driver since the rear end is bolted directly to the chassis with no suspension to absorb the energy.
Journal Article

Transient Fluid Flow and Heat Transfer in the EGR Cooler

2008-04-14
2008-01-0956
EGR is a proven technology used to reduce NOx formation in both compression and spark ignition engines by reducing the combustion temperature. In order to further increase its efficiency the recirculated gases are subjected to cooling. However, this leads to a higher load on the cooling system of the engine, thus requiring a larger radiator. In the case of turbocharged engines the large variations of the pressures, especially in the exhaust manifold, produce a highly pulsating EGR flow leading to non-steady-state heat transfer in the cooler. The current research presents a method of determining the pulsating flow field and the instantaneous heat transfer in the EGR heat exchanger. The processes are simulated using the CFD code FIRE (AVL) and the results are subjected to validation by comparison with the experimental data obtained on a 2.5 liter, four cylinder, common rail and turbocharged diesel engine.
Technical Paper

Lower Temperature Limits for Cold Starting of Diesel Engine with a Common Rail Fuel Injection System

2007-04-16
2007-01-0934
One of the most challenging problems in diesel engines is to reduce unburned HC emissions that appear as (white smoke) during cold starting. In this paper the research is carried out on a 4-cylinder diesel engine with a common rail fuel injection system, which is able to deliver multiple injections during cold start. The causes of combustion failure at lower temperature limits are investigated theoretically by considering the rate of heat release. The results of this clearly indicate that in addition to low cranking engine speed, heat transfer and blow-by losses at lower ambient temperatures, fuel injection events would contribute to the failure of combustion. Also, combustion failure takes place when the compression temperature is lower than some critical value. Based on these results, split-main injection strategy was applied during engine cold starting and validated by experiments in a cold room at lower ambient temperatures.
Technical Paper

Biomechanical Investigation of Thoracolumbar Spine Fractures in Indianapolis-type Racing Car Drivers during Frontal Impacts

2006-12-05
2006-01-3633
The purpose of this study is to provide an understanding of driver kinematics, injury mechanisms and spinal loads causing thoracolumbar spinal fractures in Indianapolis-type racing car drivers. Crash reports from 1996 to 2006, showed a total of forty spine fracture incidents with the thoracolumbar region being the most frequently injured (n=15). Seven of the thoracolumbar fracture cases occurred in the frontal direction and were a higher injury severity as compared to rear impact cases. The present study focuses on thoracolumbar spine fractures in Indianapolis-type racing car drivers during frontal impacts and was performed using driver medical records, crash reports, video, still photographic images, chassis accelerations from on-board data recorders and the analysis tool MADYMO to simulate crashes. A 50th percentile, male, Hybrid III dummy model was used to represent the driver.
Technical Paper

High-Speed Seatbelt Pretensioner Loading of the Abdomen

2006-11-06
2006-22-0002
This study characterizes the response of the human cadaver abdomen to high-speed seatbelt loading using pyrotechnic pretensioners. A test apparatus was developed to deliver symmetric loading to the abdomen using a seatbelt equipped with two low-mass load cells. Eight subjects were tested under worst-case scenario, out-of-position (OOP) conditions. A seatbelt was placed at the level of mid-umbilicus and drawn back along the sides of the specimens, which were seated upright using a fixed-back configuration. Penetration was measured by a laser, which tracked the anterior aspect of the abdomen, and by high-speed video. Additionally, aortic pressure was monitored. Three different pretensioner designs were used, referred to as system A, system B and system C. The B and C systems employed single pretensioners. The A system consisted of two B system pretensioners. The vascular systems of the subjects were perfused.
Technical Paper

Shoulder Injury and Response Due to Lateral Glenohumeral Joint Impact: An Analysis of Combined Data

2005-11-09
2005-22-0014
To date, several lateral impact studies (Bolte et al., 2000, 2003, Marth, 2002 and Compigne et al., 2004) have been performed on the shoulder to determine the response characteristics and injury threshold of the shoulder complex. Our understanding of the biomechanical response and injury tolerance of the shoulder would be improved if the results of these tests were combined. From a larger data base shoulder injury tolerance criteria can be developed as well as corridors for side impact dummies. Data from the study by Marth (2002, 12 tests) was combined with data from the previous studies. Twenty-two low speed tests (4.5 ± 0.7 m/s) and 9 high speed tests (6.7 ± 0.7 m/s) were selected from the combined data for developing corridors. Shoulder force, deflection and T1y acceleration corridors were developed using a minimization of cumulative variance technique.
Technical Paper

Design of Temperature Insensitive Ribs for Crash Test Dummies

2003-03-03
2003-01-0502
The Isodamp damping material (also known as Navy Damp) used in the ribs of current crash test dummies provides human-like damping to the thorax under impact. However, the range of temperature over which it can be used is very small. A new rib design using laminates of steel, fiberglass, and commercially available viscoelastic material has been constructed. Load-deflection response and hysteresis of the laminated ribs were compared with corresponding conventional ribs fabricated from steel and Isodamp. Impact tests were conducted on laminated and conventional ribs at 18.5° C, 22.2° C and 26.6° C. Results indicate that the response of the laminated ribs is essentially the same as that of the ribs with Isodamp at 22.2° C, which is the operating temperature of the conventional ribs. The variation in the impact response of the newly developed laminated ribs in the temperature range of 18.5° C to 26.6° C was less than 10%.
Technical Paper

Injury and Response of the Shoulder in Lateral Sled Tests

2001-11-01
2001-22-0005
The biomechanical response and injury tolerance of the shoulder in lateral impacts is not well understood. These data are needed to better understand human injury tolerance, validate finite element models and develop biofidelic shoulders in side impact dummies. Seventeen side impact sled tests were performed with unembalmed human cadavers. Data analyzed for this study include T1-Y acceleration, shoulder and thoracic load plate forces, upper sternum x and y accelerations, and struck side acromion x, y and z accelerations. One dimensional deflection at the shoulder level was determined from high-speed film by measuring the distance between a target on T1 and the impacted wall. Force-time response corridors were obtained for tests with 9 m/s pelvic offset, 10.5 m/s pelvic offset, 9 m/s unpadded flat wall, 6.7 m/s unpadded flat wall, 9 m/s soft padding and 9 m/s stiff padding. Maximum shoulder plate forces in unpadded 9 m/s tests (5.5 kN) were larger than in 6.7 m/s tests (3.3 kN).
Technical Paper

A Severe Ankle and Foot Injury in Frontal Crashes and Its Mechanism

1998-11-02
983145
In a frontal automotive crash, the driver's foot is usually stepping on the brake pedal as an instinctive response to avoid a collision. The tensile force generated in the Achilles tendon produces a compressive preload on the tibia. If there is intrusion of the toe board after the crash, an additional external force is applied to the driver's foot. A series of dynamic impact tests using human cadaveric specimens was conducted to investigate the combined effect of muscle preloading and external force. A constant tendon force was applied to the calcaneus while an external impact force was applied to the forefoot by a rigid pendulum. Preloading the tibia significantly increased the tibial axial force and the combination of these forces resulted in five tibial pylon fractures out of sixteen specimens.
Technical Paper

Pick-Up Truck Rear Window Tempered Glass as a Head Restraint—Head and Neck Loads Relative to Injury Reference Criteria

1984-10-01
841658
A series of rear impact tests of varying severity was performed using a mini pick-up truck with an instrumented Hybrid III dummy at the driver position. Head, neck and chest loads were monitored. The severities of these loads from an injury standpoint were assessed using biomechanically based reference criteria that are particularly suitable for the Hybrid III. The glass Installation performed well as a head restraint. Glass fracture from head impact was achieved only when the glass was predamaged, with surface scratches on the outer (tensile) side. The amazing strength and flexibility of tempered glass and the dramatic reduction in strength caused by small surface scratches are demonstrated.
Technical Paper

Safety Performance of Asymmetric Windshields

1978-02-01
780900
A comparative study of the safety performance of asymmetric and standard HPR windshields was conducted. The effect of increased interlayer thickness was also quantified. There were four different types of asymmetric windshields which had inner layer thicknesses of 0.8 to 1.5 mm and interlayer thicknesses of 0.76 and 1.14 mm. The experimental program consisted of both full scale sled tests and headform drop tests. A total of 127 vehicular impacts were carried out using a modified Volkswagen Rabbit. The test subject was a 50th percentile Fart 572 anthropomorphic test device. The asymmetric windshields were found to have a lower lacerative potential than that of the standard windshield. The best TLI value of 5.2 was provided by a 0.8 - 0.76 mm windshield at 60 km/h. That for the standard windshield was 7.7 at the same speed. All HIC values were less than 1,000 at 48 km/h.
Technical Paper

Dynamic Characteristics of the Human Spine During -Gx Acceleration

1978-02-01
780889
Spinal kinematics and kinetics of human cadaveric specimens subjected to -Gx acceleration are reported along with an attempt to design a surrogate spine for use in an anthropomorphic test device (ATD). There were a total of 30 runs on 9 embalmed and 2 unembalmed cadavers which were heavily instrumented. External photographic targets were attached to T1, T12, and the pelvis to record spinal kinematics. The subjects were restrained by upper and lower leg clamps attached to an impact seat equipped with a six-axis load cell. A rigid link 486 mm long and pinned at both ends was proposed for use in an ATD as a surrogate spine. An optimization method was used to obtain the location and length of a linkage which followed the least squares path of Tl relative to the pelvis.
Technical Paper

Static and Dynamic Articular Facet Loads

1976-02-01
760819
Previous work on biodynamic response to whole-body +Gz (caudocephalad) acceleration gave ample evidence of facet loads in intact cadaveric spines. The computation of facet loads was based on an assumption that the total spine load was proportional to the measured seat pan load. In this study, the aim is to investigate the magnitude of the facet load during static and dynamic loading of an exised spinal segment. The applied loads resulted in a close simulation of those experienced by the intervertebral disc during whole-body impacts. An intervertebral load cell was used as the controlling mechanism in the duplication of the whole-body run in a testing machine. During these tests, both the total spine load and the intervertebral load were measured and thus the facet load was determined without relying on any assumptions.
Technical Paper

Full-Scale Experimental Simulation of Pedestrian-Vehicle Impacts

1976-02-01
760813
A series of 10 full-scale experimental simulations of pedestrian-vehicle impact was carried out using cadavers and a 95th percentile anthropomorphic dummy. The test subjects were impacted laterally and frontally at 24, 32 and 40 km/h (15, 20 and 24 mph). Each subject was extensively instrumented with miniature accelerometers, up to a maximum of 53 transducers. The nine-accelerometer scheme was used to measure angular acceleration of body segments from which it was possible to compute the head injury criterion (HIC) for cadaver head impact. A full-size Chevrolet was used as the impacting vehicle. The impact event was three-dimensional in nature during which the body segments executed complex motions. Dummy impacts were more repeatable than cadaver impacts but the response of these test subjects were quite different. The HIC was higher for head-hood impact than for head-ground impact in two of the cases analyzed.
X